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Abstract

Many code optimisation and analysis techniques depend on the representation of a
program in form of a control flow graph. Nowadays, several tools that generate control
flow graphs out of source code exist. Until we started our project, there were no such
utilities for Ada.

The purpose was to develop a program that generates control flow graphs for arbi-
trary Ada programs, and lets other tools access this information.

As an interface to the Ada environment we used ASIS-for-GNAT. It provides us
with the abstract syntax tree, that we use as input for our transformation. The control
flow graph is generated during a single inorder traversal of the syntax tree. However,
after that main transformation phase further refinement is done.
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1 Introduction

Many code optimisation and analysis techniques depend on the representation of a program
in form of a control flow graph. The purpose of this project was to develop a program
that generates control flow graphs for arbitrary Ada programs, and lets other tools access
this information. This program, Ast2Cfg, was designed as a library, and is already used by
Cfg2Dot, a tool we developed in order to visualise the resulting control flow graphs.

In the remainder of this Section we will give an overview on the libraries and techniques
(Section 1.1 to 1.3) used throughout this project and explain some of the key concepts of
Ast2Cfg (Section 1.4). Section 2 contains detailed information on how to use Ast2Cfg and
the data structures it provides, while Section 3 documents the implementation details of the
underlying transformation process.

1.1 ASIS

ASIS, the Ada Semantic Interface Specification is a standard for an interface between an
Ada 95 environment and any tool requiring information from it. It is independent of the
underlying Ada environment implementations. The ASIS interface consists of a set of types,
subtypes, and subprograms which provide a capability to query the Ada compilation envi-
ronment for statically determinable syntactic and semantic information. The base object
in ASIS is the Asis.Element, which is an abstraction of entities within a logical Ada syn-
tax tree. So elements correspond to nodes of a tree representation of an Ada program and
therefore represent Ada language constructs. [4]

The usual way of interacting with an ASIS implementation is to traverse this syntax
tree and query for information on the visited elements. The ASIS implementation used
in this project is ASIS-for-GNAT, which is the implementation for use with the GNU Ada
compiler GNAT. During this project, which is aimed at supporting Ada 2005, eventually more
and more features of Ada 2005 got implemented in GNAT and ASIS-for-GNAT. However,
presently, none of them fully supports the Ada 2005 standard, which is why the current
versions of our tools do not support the whole language set of Ada 2005 either.

1.2 Syntax Trees

An abstract syntax tree (AST) is defined [3] as a tree in which each node represents an
operator, and the children of the node represent its operands. As an example consider
the subtree rooted at Node N7 in Figure 1, where the node representing the assignment
statement has two children: one for each operand. However, Figure 1 also reveals that the
syntax trees provided by ASIS are far more complex, because whole Ada programs have to
be represented, not just simple expressions. So a predecessor successor relation may also
have other meanings than the child node being an operator to its father. For example the
root node in Figure 1 is split up into several parts represented by its children. The first child
is the name of the procedure, the second the only variable declaration and the third child
node corresponds to the only statement in the procedure body.
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In general, syntax trees not only play an important role in compilers, but are also used
by CASE tools and for program analysis that does not require control flow information.

In order to study the syntax trees provided by ASIS we also developed a small application
named Ast2Dot (execute ast2dot −h for usage information). It transforms the trees into
dot files, which may be converted into several graphics file formats using the dot command
which is part of the graphviz package in most GNU/Linux distributions and is also available
for other operating systems. Figure 1 shows an ASIS AST corresponding to the code in
Listing 1 as output by Ast2Dot.

Listing 1: The code to the AST in Figure 1
procedure Test is

X: Integer;
begin

X := 1;
end Test;

N1: A_Declaration SubType: A_Procedure_Body_Declaration

procedure Test is
X: Integer;

begin
X := 1;

end Test;

N2: A_Defining_Name SubType: A_Defining_Identifier

Test

N3: A_Declaration SubType: A_Variable_Declaration

X: Integer;

N7: A_Statement SubType: An_Assignment_Statement

X := 1;

N4: A_Defining_Name SubType: A_Defining_Identifier

X

N5: A_Definition SubType: A_Subtype_Indication

Integer

N6: An_Expression SubType: An_Identifier

Integer

N8: An_Expression SubType: An_Identifier

X

N9: An_Expression SubType: An_Integer_Literal

1

Figure 1: A simple ASIS AST as output by Ast2Dot.

1.3 Control Flow Graphs

A Control Flow Graph (CFG), or simply Flow Graph is a directed graph, where the nodes
represent basic blocks which consist of a linear sequence of statements. There is a directed
edge from Block B1 to Block B2 if B2 immediately follows B1 in some execution sequence.
Then B1 is a predecessor of B2, and B2 is a successor of B1. The initial node is the block
whose leader is the first statement.[3]

Figure 2 shows a simple CFG that corresponds to the program shown in Listing 2. The
initial or root node is marked with grey background.

As a CFG represents the statically determinable control flow of a program in an easily
accessible way, it is essential to many optimisation and static analysis techniques.

However, the control flow graph used throughout this project is in fact a more complex
and richer data structure. First, in order to be able to link a node to its corresponding ASIS
element in a convenient way, a linear sequence of statements is not compressed into a single

4



Listing 2: The code to the CFG in Figure 2
with Ada.Text IO; use Ada.Text IO;

procedure Sum is
I,S: Integer;
A: array (1 .. 3) of Integer;

begin
A := (1,2,3);
S := 0;
I := 1;
loop

if I <= A’Last then
S := S + A(I);
I := I + 1;

else
exit;

end if;
end loop;
Put Line(Integer’Image(S));

end Sum;

if I <= A’Last

exit;S := S + A(I);
I := I + 1;

Put Line(Integer’Image(S));

end if;

A := (1,2,3);
S := 0;
I := 1;

Figure 2: A simple control flow graph.
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node (basic block) but appears as a linear sequence of nodes. Furthermore, parameter trees
(see Section 2.2.2) which hold information on the structure of expressions are integrated into
the CFG. Also information on used types has been integrated (see 2.2.7) and subprogram
calls result in links to the corresponding CFGs. Finally, there are different types of nodes
(see 2.2.5) and CFGs (see 2.2.4) which bear additional information.

1.4 Ast2Cfg

The main goal of this project was to develop a library that enables the user to retrieve the
control flow graphs for a given Ada program. Since through ASIS basically the AST of a
program can be accessed, and we generate the CFGs from it, we decided to call our library
Ast2Cfg. This report documents version 0.1 of Ast2Cfg, version 0.6 of the related Cfg2Dot
program, and version 0.9.1 of the already mentioned Ast2Dot. All programs are available
under terms of the GNU General Public License from http://cfg.w3x.org.

Figure 3 gives an overview of the basic structure of the transformation process. First
GNAT has to be used to generate the so-called tree files for the given program. This is done
using GNAT’s −gnatt and −gnatc options. A tree file contains a snapshot of the compiler’s
internal data structures at the end of the successful compilation of the corresponding source
[2]. ASIS-for-GNAT uses these tree files as input, and provides access to the AST structure.
Ast2Cfg traverses the ASTs using the ASIS application template provided with a typical
ASIS installation. This template traverses the ASTs of a given program using a depth first
search algorithm. The user of the template has to provide two procedures: one that is
executed when a node is visited for the first time (Pre Op), and one that is executed when
a node is visited on the way back (Post Op). Additionally our transformation makes use
of a procedure that is called whenever a successor (a child) of some node is finished, that
is, Post Op has been executed for this child. These three procedures are the core of the
transformation which builds the CFG for the input program.

AST
Structure

AST
File

T
ra

ve
rs

al

Pre Op

Post Op
CFG

∗ Child Has Finished

CHF∗

Figure 3: The basic structure of the transformation process.

The Cfg2Dot program we developed along with Ast2Cfg is a good example of how to
use the Ast2Cfg library. It uses Ast2Cfg to generate the CFGs for a given program (execute
cfg2dot −h for a list of command line options) and outputs them in dot format, which may
then be compiled to several graphics file formats, including postscript.
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2 Usage

2.1 Ast2Cfg Library

Ast2Cfg is designed as a library and therefore the directory containing its sources has to be
included with the −I option when using GNAT. Furthermore there are three packages which
will need to be included by with clauses almost always: Ast2Cfg.Output, Ast2Cfg.Control
and Ast2Cfg.Flow World.

By default Ast2Cfg does not output anything, even in case of an error. However, this
behaviour can be changed with Ast2Cfg.Output.Set Level which takes an argument of
type Level Type. This can be one of None, Error, Warning, Verbose, Debug and Max, where
Warning is recommended for most applications. All output Ast2Cfg produces will go to
standard error.

Ast2Cfg.Control allows to control the transformation in a convenient way. First Init,
which optionally takes a Wide String with the ASIS context parameters, has to be called.
The ASIS context parameters determine what tree files are considered. For example −C1
considers a single tree file whose name is given as the next parameter [1]. The default is
to consider every tree file in the current directory. For a complete list of ASIS context
parameters see the ASIS-for-GNAT Reference Manual [1].

To start the actual transformation process Ast2Cfg.Control.Generate has to be called,
which also returns an access to the resulting world object (see Section 2.2). After the program
has completed its own analysis of the transformation results, Ast2Cfg.Control.Final has
to be called in order to free the memory reserved by the Ast2Cfg structures (including the
world object) and to finalise ASIS.

To summarise, Listing 3 shows a minimal application that makes use of the Ast2Cfg
library.

Listing 3: A minimal application using Ast2Cfg
with Ast2Cfg.Control;
with Ast2Cfg.Flow World;
with Ast2Cfg.Output;

procedure Run is
World: Ast2Cfg.Flow World.World Object Ptr;

begin

−− Initialisations
Ast2Cfg.Output.Set Level(Ast2Cfg.Output.Warning);
Ast2Cfg.Control.Init;

−− Fill the World with flow data
World := Ast2Cfg.Control.Generate;

−− Utilise the Flow World

−− Finalisation
Ast2Cfg.Control.Final;

end Run;
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2.2 Flow World

An object of type World Object is the result of the transformation and therefore contains
all control flow information derived from the tree files. World Object.Pkg List is a list (see
2.2.8) of all root packages of the analysed program, where a package object (Pkg Object)
corresponds to an Ada package of the transformed program. Control flow information that
is not part of a package is contained within a default package.

A Pkg Object is derived from the abstract Flow Object, which is also the superclass of
CFG Object and Node Object. A CFG object corresponds to an entity in Ada that contains
control flow, which not only may be a subprogram but for instance also the initialisation
sequence of a package, a block, etc. Finally, to reflect the control flow a CFG object makes
use of node objects. As shown in Figure 4 these classes also have a couple of subclasses in
order to allow a more fine grained classification.

2.2.1 Pkg/CFG tree

In Ada not only a subprogram may be declared in a package, but a package may also be
declared within a subprogram. In this context we say that a flow object is a successor of
another one if it is declared within the other one. Thus not only a node object but in fact
every flow object has predecessors and successors which may be retrieved with Get Preds

and Get Succs, respectively. This relationship between package and cfg objects imposes a
tree structure on the flow world, the Pkg/CFG tree. In fact, there can be multiple Pkg/CFG
trees in a world object, because there is usually more than one package in a flow world that
serves as a root. Figure 5 shows the Pkg/CFG tree which was generated from the code in
Listing 4 by Cfg2Dot.

Listing 4: The code from which Figure 5 was generated.
procedure Test is

package Sub Pkg is
procedure Sub Sub CFG;
package Sub Sub Pkg is
end Sub Sub Pkg;

end Sub Pkg;

package body Sub Pkg is
procedure Sub Sub CFG is
begin

null;
end Sub Sub CFG;

end Sub Pkg;

procedure Sub CFG is
begin

null;
end Sub CFG;

begin
null;

end Test;
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Abort Object

Block Object

Entry Object

Except Object

Func Object

Init Object

Proc Object

Task Object

Generic Object

Task Type Object

Single Task Object

Call Node Object

Accept Node Object

Entry Call Node Object

Abort Node Object

Param Call Node Object

Def Object

Simple Body Object

Prot Object

Simple Spec Object

Gen Object

Single Prot Object

Prot Type Object

Node Object

Goto Jump Node Object

Exit Jump Node Object

Return Node Object

Terminate Node Object

Param Node Object

Param Alloc Node Object

Assign Node Object

Finite Loop Node Object

Infinite Loop Node Object

Branch Node Object concrete

Body Object

CFG Object

Spec Object

Flow Object

Jump Node Object

Loop Node Object

abstract

Body Object

Pkg Object

Spec Object

Figure 4: Class hierarchy of the flow types.

9



Default_PKG
(body)

Test
(body)

Sub_Pkg
(spec)

Sub_Pkg
(body)

Sub_CFG
(body)

Sub_Sub_Pkg
(spec)

Sub_Sub_CFG
(body)

Figure 5: The Pkg/CFG tree generated from Listing 4.

2.2.2 Parameter Trees

Whenever an expression is encountered a parameter tree is generated which holds information
on the used variables, functions, etc. and their nesting.

As a simple example consider the code in Listing 5 and the appropriate output from
Cfg2Dot in Figure 6. The actual control flow comprises only a single assignment node (see
2.2.5) which has two parameter trees: one for the left hand side of the assignment, and one
for the right hand side. As can be seen, a parameter tree basically consists of parameter call
nodes which represent function calls and plain parameter nodes (see 2.2.5). Every level of
nesting corresponds to a level in the parameter tree, so a child node contains a parameter to
its predecessor. Therefore a subtree represents a subexpression and the leaf nodes contain
either an indivisible expression or nothing. (A parameter node is empty if it represents a
parameter that is a constant.)

2.2.3 Flow Object

Every flow object has a unique id which can be acquired with Get Id and may be tested
for equality. Each id consists of a number for the package, one for the cfg and one for the
node, where a number is zero if it is not needed. For example 1.2.0 is the id of the second
cfg from the first package. In addition package and cfg objects normally also have a name,
saved as a String, which can be retrieved by calling Get Name. The name of a node object
can be the name of the label for that node, in case one has been defined, or the name of the
parameter in case of a parameter node (see Section 2.2.5). Otherwise it is empty.

All flow objects have predecessors and successors, which can be obtained with Get Preds

and Get Succs, respectively. While such relationships form a Pkg/CFG tree when used
between package and CFG objects (see section 5), they build a control flow graph when used
between node objects.
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Listing 5: The code from which Figure 6 was generated.
procedure Test is

function Func (I: Integer) return Integer is
begin

return 0;
end;

function Func2 (I: Integer; J: Integer) return Integer is
begin

return 0;
end;

X,Y: Integer := 0;
A: array (1..10) of Integer := (others => 0);

begin

A(1) := Func2(X, Func(I => Y));

end Test;

Assignment Node 1.3.14:

Idents: A,Func2,Func
A(1) := Func2(X, Func(I => Y));

Parameter Node 1.3.13:

ASSIGN/LHS

Parameter Node 1.3.16:

ASSIGN/RHS

Parameter Node 1.3.15:
Variable: A
IDX/COMP

Parameter Call Node 1.3.17:
Dest: Func2

FUNC/PARAM/ROOT

Parameter Node 1.3.18:
Variable: X

PARAM/NODE

Parameter Call Node 1.3.20:
Dest: Func

FUNC/PARAM/ROOT

Parameter Node 1.3.21:
Variable: Y

Name: I
PARAM/NODE

Figure 6: The CFG generated from Listing 5.

11



Calling Get PTree on a flow object may return the root node of a parameter tree. There
are some situations, where there simply is no other, more adequate place to save a parameter
tree. One example is the parameter tree of an expression following when in an entry body
of a protected object. It is saved as this so-called extra parameter tree in the corresponding
Entry Object (see Section 2.2.4).

Furthermore, a flow object has a list of variable declarations and a list of generic formal
parameters. They are acquired with calls of Get Decls and Get FDecls, respectively. A list
of renamings is returned by Get Rens, whereas a list of types declared within this flow object
is returned by Get Types. Finally, a list of references, that is a list of with, use and use type

clauses, is returned by Get Refs. For a detailed description of the internal representation see
Section 2.2.7.

2.2.4 CFG Types

As already mentioned, a CFG object represents the control flow information by using node
objects. The root node of a CFG object can be retrieved with the Get Head method,
and the total number of nodes, excluding those in parameter trees, is returned by call-
ing Get Node Sum. Since most CFGs represent some form of subprogram, the parameters are
saved as a list of Declaration objects (see Section 2.2.7), and may be acquired by calling
Get Params.

As can be seen in Figure 4 CFG Object itself is abstract, so all cfg objects have to be of a
more specific, concrete subtype. There are subtypes which represent data gained from Ada
bodies and those containing information on Ada specifications, which is reflected through
derivation from either Body Object or Spec Object.

Proc Object and Func Object simply represent the CFG of a procedure or function, re-
spectively. The member function Get Decls returns a list of the variables which are declared
in this procedure or function, and Get Params returns a list of the parameters. A variable
or parameter in one of those lists is represented as a Declaration (see Section 2.2.7).

A block within some other CFG object is transformed into a separate Block Object and
is handled like a parameterless function called at the position where the block is declared.
So a call node (see 2.2.5) that points to the block object is inserted in place of the block.
Again Get Decls can be used to get the list of variables declared at the beginning of this
block. Currently, only a string representation of the CFG object this block belongs to is
available through Get LName. However, in future versions of Ast2Cfg there will be an access
type pointing directly to the CFG object.

The sequence of statements between begin and end of a package body is transformed
into an Init Object. For every exception handler between exception and end a separate
Except Object is generated.

A Task Object corresponds to a task body, where an accept statement is transformed
separately into a so-called Entry Object. As with simple blocks, it is then linked to the en-
closing task body like a parameterless procedure call, and the declared variables are available
as usual. Furthermore the protected entries of a protected object (see also 2.2.6) are also
mapped to entry objects. An Abort Object represents the control flow of the abortable part
of a select - then abort statement. It is, again, linked into the control flow of the select
statement like a parameterless procedure call.
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Finally, there are three CFG objects derived from Spec Object, which means they can-
not contain any actual control flow. The main purpose of including those objects in the
Pkg/CFG tree is to keep track where they are defined, so that information on visibility may
be gained later on. A task type declaration results in a Task Type Object while a simple
task specification (without the type keyword) is mapped to a so-called Single Task Object.
The discriminants of a task type declaration are handled like parameters of a subprogram,
and therefore are returned by Get Params.

A Generic Object is constructed whenever a generic procedure or function specification
is encountered. Get FDecls returns a list of the generic formal parameters, which are repre-
sented as Formal Decl objects (see Section 2.2.7). The list of the actual parameters of the
subprogram is acquired as usual. The body of a generic subprogram is handled like a normal
subprogram body.

2.2.5 Node Types

Unlike CFG or package objects, Node Object is not declared abstract, so any node of the CFG
that has no special properties as described below simply is of type Node Object. Every node
has a link to the CFG it belongs to, and a string which holds at least part of the code fragment
that is represented by the node. Every node also has a parameter tree, which is returned
by Get RHS Tree. This tree is called right hand side tree because every node other than
an assignment node is considered to only have a right hand side. An Assign Node Object

therefore is the only node object that also has a left hand side parameter tree for the part
to the left of the assignment operator.

Furthermore every node has a list of the found identifiers for that node. Technically this
is a list of lists of unbounded strings since every identifier name is saved, divided into the
parts that are normally separated by a dot. Note, that this list may not be complete in the
current version of Ast2Cfg and that the parameter tree has to be parsed in order to be sure
to get all identifiers. Finally every node contains the Asis.Element that was the basis for
this node. The element can be acquired by calling Get Element and in fact is like a link back
into the ASIS AST. So it is possible to gain additional information from ASIS by analysing
the AST starting at some Asis.Element which was saved in an arbitrary node. In case there
is no element that corresponds to the node Get Element returns Asis.Nil Element.

A Call Node Object is not only used to represent a subprogram call, but also in various
situations that are treated like a subprogram call, as stated in Section 2.2.4. Therefore every
call node saves a string representation of the destination CFG. Currently in some cases the
CFG also holds a string representation of the call node. In future versions of Ast2Cfg every
call node will also contain an access type pointing directly to the CFG. As can be seen
in Figure 4 there are a few subtypes of Call Node Object that allow a more fine-grained
classification. While an Accept Node Object is used to link an Entry Object to its enclosing
task body (see 2.2.4), an Entry Call Node Object represents the call of such an entry. An
Abort Node Object similarly is used to link the abortable part of a select - then abort

statement into the control flow of the select statement. Finally a Param Call Node Object

simply is a call node within a parameter tree representing some function call.
There are two types derived from the abstract Jump Node Object, the

Goto Jump Node Object which is generated whenever a goto statement is encountered and
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the Exit Jump Node Object which represents an exit statement within a loop. In the current
version of Ast2Cfg the target of the jump is already a successor of the jump node, however,
Get Target also returns the label as a string. A Return Node Object is generated whenever
a return statement is encountered, while a Terminate Node Object represents a terminate
statement.

A Loop Node Object indicates the header of a loop, and there are two concrete sub-
types, the Finite Loop Node Object which represents a while or for loop statement and
the Infinite Loop Node Object which corresponds to a simple loop statement. Note that
a Infinite Loop Node Object may in fact be a finite loop because for example there is an
exit statement within the loop, and a Finite Loop Node Object may represent an infinite
loop because the loop condition always holds. The naming just reflects that an infinite loop
node itself has no loop condition.

A parameter tree (see Section 2.2.2) has nodes of type Param Node Object,
Param Call Node Object or Param Alloc Node Object. A Param Node Object not only saves
the name of the variable that was supplied as a parameter, but also holds the name of
the parameter in case it was specified. A parameter node with an empty variable denotes
that a constant was given as a parameter. A Param Alloc Node Object is used whenever a
variable is allocated dynamically using the new keyword. The name of the instantiated type
is returned by Get Type Name.

When an if or case statement is encountered, first an otherwise empty header node,
where the branching actually happens, is created. So the successors of such a
Branch Node Object contain the condition for each branch (or nothing, in case of an else

node). Then the actual branches follow, until control flow is united again in an end node.
Note that in case of an if statement without an else path, there is a direct link from the
header node (the Branch Node Object) to the end node.

2.2.6 Package Types

Like the CFG Object, the Pkg Object is abstract too and all subtypes are derived either from
Body Object or Spec Object like shown in Figure 4. The primary function of the package
types is to help building the Pkg/CFG tree (see 2.2.1). So in order to see what is in a package
Get Succs will have to be used until the whole subtree is traversed. Every package object,
except a Prot Object and the Def Object, also contains a list of declared variables which
may be acquired by calling Get Decls. However, some package objects contain additional
information.

The default package is of type Def Object. It is an artificial package that a CFG is
added to in case there is no real enclosing package. The body of a protected object or type
is transformed into a Prot Object, which may contain subprograms or entries (see Section
2.2.4). Its specification is represented by a Prot Type Object in case of a protected type
declaration or a Single Prot Object otherwise. The body of a generic package is mapped to
a Simple Body Object like a normal body. The specification, however, is transformed into a
Gen Object which also contains the generic formal parameters. They can be acquired using
the Get FDecls function.

All other packages are transformed into a Simple Spec Object and, if there is a body, a
Simple Body Object.
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2.2.7 Auxiliary Types

Not every type used within Ast2Cfg is derived from Flow Object, in fact there are many
types that play an auxiliary role.

Pkg Inst Alias

Proc Inst Alias

Obj Alias

Pkg Alias

Except Alias

Generic Alias

Func Inst Alias

Proc Alias

Func Alias

Declaration

Pkg Formal Decl

Obj Formal Decl

Proc Formal Decl

Func Formal Decl

Type Formal Decl

With Ref

Use Pkg Ref

Use Type Ref

concrete

Alias

Instance Alias Formal Declaration

Reference

abstract

Figure 7: Class hierarchy of some auxiliary types.

A typical usage of the type Alias is to represent some kind of renaming. Its directly acces-
sible member variables include the old name, the new name and an optional parameter tree.
The parameter tree has to be saved, because an array component may be renamed too and
therefore arbitrary expressions may be used to specify the index (e.g. X renames A(Func(Y))

where A is an array and Func a function). Additionally, as shown in Figure 7, there are several
subtypes of the abstract Alias which allow for a detailed classification.

A Proc Alias or Func Alias represents a renaming of a procedure or function, respec-
tively. A Pkg Alias is used for renamings of packages and a Except Alias is generated
whenever an exception is renamed. When a simple object of some type is renamed, an
Obj Alias is created.

Alias objects are also used to keep track from which generic unit a package, procedure
or function was instantiated. This is done using Pkg Inst Alias objects for instantiated
packages, Proc Inst Alias objects for procedures and Func Inst Alias objects for functions.
These objects are derived from the abstract Instance Alias (see Figure 7) and therefore also
have a list of aliases as a member variable. This is because when an instance is created from
a generic unit, the generic formal parameters can be given using the named notation (with
=>). Such a relationship between a generic formal parameter name and the given parameter
is saved using a Generic Alias, however, in case the named notation is not used, the name
of the generic formal parameter is empty. So every instance alias has a list of Generic Alias
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objects.
A Type Descr object is used to hold information on a type declaration and is a simple

record with several, directly accessible components. First there is the name of the type,
followed by the supertype in case it is known like in the declaration type T is new Integer.
In case of an array type, the type of the components is also recorded. Furthermore a list of
identifiers found in the type declaration is available, and the discriminants and component
types of a record are also saved as a list of Declaration objects (see below). Finally, a
boolean value is used to determine if a type is declared as private. This is necessary, since
for a private type a second declaration exists, containing more details.

A Declaration object represents a variable declaration. Its directly accessible member
variables include a list of strings containing the variable names called Vars, a Type Descr

object named VType that holds information on the type of all the declared variables and the
root node of the corresponding parameter tree named Init.

A Formal Decl object is derived from Declaration and represents a declaration of a
generic formal parameter. Since Formal Decl itself is abstract one of the five concrete sub-
types has to be used. Every object derived from Formal Decl additionally has a member
variable which holds a list of aliases. This is because for example in case of a package pa-
rameter, which is mapped to a Pkg Formal Decl object it is possible to specify parameters
(e.g. with package P is new Pkg(X => Y);) which are saved as generic aliases in the same
way as it is done for the Instance Alias objects described above. A Proc Formal Decl

object is used for procedure parameters, Func Formal Decl for function parameters and
Type Formal Decl for type parameters. Finally, Obj Formal Decl objects are used for or-
dinary variables that are used as parameters for a generic unit.

A concrete subtype of Reference is instantiated whenever a with (With Ref), use
(Use Pkg Ref) or use type (Use Type Ref) clause is encountered. The name of the target of
such a clause is saved in the component Name.

2.2.8 Lists

We implemented two types of generic lists, the Generic List and the Generic Pointer List.
All lists used throughout Ast2Cfg are instantiations of these two generic packages and their
names end either with “ List” or “ Ptr List”. The difference between these two types of
lists is that the Generic Pointer List not only takes the type of item as a generic formal
parameter, but also has a subprogram parameter where a procedure that frees an item has
to be provided. This is done to ensure correct deallocation of list elements.

Listing 6 shows how a list is accessed using the Has Next and Get Next methods. Note
that the iterator has to be reset by calling Reset. Another approach is to access the list
like a stack using the Empty and Pop methods which is shown in Listing 7. However, since
Pop does remove an element from a list it is recommended to use this access method only
on duplicated lists and not directly on a list in the flow world. Lists can be duplicated with
the Duplicate method.

The Clear method of a list instantiated from Generic List deallocates all elements, so
the list is empty afterwards. If the list was allocated dynamically Free has to be called on
the pointer to the list in order to deallocate the list header too. The semantics of Clear
and Free differ a bit in the context of a list instantiated from Generic Pointer List. Here,
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Listing 6: Iterating over a list
Succs := Get Succs(Flow);
Reset(Succs);
while Has Next(Succs) loop

Get Next(Succs, Succ);
−− do something with Succ

end loop;

Listing 7: Accessing a list like a stack
Succs := Get Succs(Flow);
while not Empty(Succs) loop

Pop(Succs, Succ);
−− do something with Succ

end loop;

a call of Clear still results in an empty list, however, without executing the supplied free
procedure on every element. In contrast, Free executes the free procedure and, if called with
a pointer, also deallocates the list header. Again it is not recommended to use this methods
directly on lists in the flow world since deallocation is done by Ast2Cfg.Control.Final (see
Section 2.1).

Other helpful methods may be Get Head and Get Tail which return the first and last
element, respectively.
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3 Implementation

This section describes the technical details of the Ast2Cfg implementation. In the begin-
ning we offer a brief overview (3.1) of the transformation and present the general usage of
the deployed data structures (3.2). We then proceed with an in-depth description of the
transformation (3.3, 3.4) of each ASIS type handled by our program.

The presented structures are the pillars of the CFG data extraction and their description
(3.2) should be studied before proceeding through the more advanced implementation details.

3.1 Overview

The abstract syntax tree to control flow graph transformation consists of two phases:

1. AST Traversal: As stated in the previous sections, the AST-to-CFG transformation
is built on top of a depth-first-search traversal of the syntax tree. It suffices to walk
the tree once to obtain the raw CFG structure. See 3.3 for further details.

2. Post Transformation Processing: To obtain the final CFG, further work is needed
on the resulting structure. This, among others, includes compressing parameter trees,
linking call and jump nodes to their targets and pruning unreachable CFG sections.
See 3.4 for further details.

Both phases work on the flow world structure created upon initialisation of the transfor-
mation mechanism. The AST traversal adds new data to the flow world on-the-fly, during
the AST-walk, whereas the post transformation processing modifies only the existing flow
structures.

The processing done during the AST traversal is handled by three main methods that,
together, build up a state machine. These methods are:

1. PreOp: HandlePreOp(Node) This event is triggered each time the in-order traversal
reaches a new node in the AST, before any processing is done on the underlying subtree.

2. PostOp: HandlePostOp(Node) This event is triggered just after the traversal has left
a node, after all processing of the underlying subtree has finished.

3. CHF: HandleChildHasFinished(Parent,Child) This event is triggered just after the
traversal has left a node, and is basically similar to the PostOp event. The difference
is, however, that this method is used to underline a father-child relationship, thus
enabling the transformation logic to also handle context-induced information.

The logical connection between PostOp and CHF is that after the former finishes it
calls the latter to signal the termination of a child node to its parent.

Since all methods above are called for each node in the AST, every one of them must be
able to handle all ASIS types that may occur. This leads to a symmetrical structure of the
three subprograms, each consisting of almost exactly the same case-block.
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The Ada syntactical constructs can be divided into groups, with each of these classes
having a common abstract syntax subtree configuration for all its members. For example,
let us consider the variable declarations, the component declarations (for aggregate types)
and the parameter specifications (for subprograms). Each of these declarative constructs is
described through the names of the declared entities, their type and possibly their initialisa-
tion expression. It is thereby easy to see why all subtrees induced by these declarations are
identical.

To profit from such class-similarities, many of the case-branches have been pulled to-
gether, while keeping the transformation itself as context-free as possible. This allows us to
use the same code to process similar subtrees, regardless of their point of origin.

In most cases, the flow data can be added to the flow world immediately upon reaching
an AST node. As an example, let us consider the ASIS procedure call statement. This
type stands for procedure calls in the original source code and the subtree rooted in this
node describes the statement: labels, name of the called subprogram and parameters. The
standard PreOp handling is to immediately add a new call node to the current CFG. Later
on, upon processing the subtree, we will encounter a CHF event for a procedure call parent
and an identifier child, in which case we will know we have reached the name of the called
subprogram. This information will then also be saved in the call node we have created
earlier.

In other cases, however, due mainly to the context-free nature of the transformation, an
immediate update of the flow world is not possible. We return now to the previous entity
declaration example. In order to save information about the subtree directly into the flow
world, we would have to search each time for the point of origin of this subtree: e.g. the
parameter specifications are not being saved together with the component declarations. By
doing so, we would render our transformation context-sensitive again and would remove
all advantages derived from the similarity of the subtrees. To avoid this, we use an interim
storage (common to all these declarations) for the data gathered during the subtree traversal.
Only when the processing has finished, when PostOp-ing the root node, we interrogate the
structures for the declaration kind and move all the data, in one step, from the interim
storage to its final location in the flow world.

There are several such cases in Ast2Cfg, where a temporary storage is required, and the
complete description of the used structures can be found in Section 3.2.

3.2 Structures and Concepts

To keep track of the current transformation status, we employ a series of data structures
declared in the Ast2Cfg transformation package, that are being updated along the way.

They can be roughly divided into two groups: positional structures (mainly stacks 3.2.1)
indicating our current position in the AST or in the flow world and the interim storage struc-
tures (the transformation data container 3.2.2) that temporarily hold information extracted
from the AST until it is ready to be transferred to the flow world.

Last but not least is the pointer to the flow world. The corresponding structure is created
during the initialisation of the transformation and will be returned as result after the entire
process finishes.
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3.2.1 Stacks

Due to the nested nature of almost all processed structures we employ stacks to keep track
of the nesting and order relationships between visited entities.

This section describes the four main stack categories and is best read before the study of
the transformation implementation, since it also presents many of the concepts employed in
the procedure.

Element Stack Our current position in the AST - induced by the DFS traversal - can be
described as a path from the root of the tree to the current node. For several reasons, we
must keep track of this path at all times. These include among others:

• Knowing the children count for a certain element1. Often, during a CHF-event
we must consult the number of already visited children for a parent element before
handling one of its sons.

• Respecting the nesting relationship of flow structures with a malformed PreOp-
PostOp sequence. In the vast majority of the cases each flow package and CFG is
opened/closed by a PreOp respectively PostOp event on the root node of the corre-
sponding package-/CFG-subtree.

In some cases, that we regard as ASIS inconsistencies, however, this sequence is de-
formed. Let us consider the initialisation block of a package. Statements are allowed,
per default, only in CFG-structures (procedures, functions, etc.). The statements in
the initialisation block are, in this case, direct children of the root (package) node.

When walking the subtree, we receive a PreOp event for the new package and therefore
create one in the flow world. Immediately afterwards, we receive PreOp events for
statements, which theoretically should not happen. Without having previously received
a similar event for a CFG, we have no proper structure to hold statements at this time
and for this, we must force the creation of one.

Upon PostOp-ing the package node we do, this time, not only have to close the open
package but also force the closing of the subsequent initialisation CFG. The information
on the element stack tells us in such cases - if everything went well - that the currently
open initialisation CFG has been forcibly induced by the package element.

This mechanism is also extremely useful as a transformation consistency check. The
constraint that the currently open flow structure is only allowed to be induced by
the current element must hold at all times. For this purpose we save, for each open
flow structure, the inducing element (see 3.2.1). When closing the current flow object,
its inducing element must be equal to the one on top of the element stack. If these
structures evolve out of sync, it is a sure indicator that an error has occurred on the
way.

Due to the previous considerations, we save the path from the root of the AST to the
current node on the element stack as follows: for each PreOp we push the regarded element

1In respect to the ASIS naming convention, we will sometimes refer to the AST nodes as ASIS elements.
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onto the stack and for each PostOp we remove it. Together with each element we also save a
child counter that we increment by a value of one for each of the element’s visited children.

Figure 8 depicts a possible traversal scenario with a current path N1 to N4 in the given
AST and the corresponding element stack configuration.

Flow Stack The location of a language construct in the source code of the analysed
program is given in the AST implicitly by its relative position to the father structure, i.e.
it must be located in the subtree describing it. Since Ada allows complex package- and
CFG-nesting hierarchies, we must - at any point in time - be able to determine the parent
flow structure for the currently active AST element.

To allow an error free processing of deep nesting relationships we employ a flow stack data
structure. On top of this stack always lies the nesting-innermost flow structure (package or
CFG) currently in processing. When PreOp-ing such a structure, we place a corresponding
object on the flow stack and when PostOp-ing it, we remove it from the stack again.

Figure 9 depicts the AST for a source code implementing a package P. Inside P lie two
CFGs (two subprograms) C1 and C2. A third CFG C3 is nested inside C1. We emphasise
two of the advantages brought by the flow stack usage:

• The flow stack allows us to move up and down in the nesting hierarchy in order to
construct the flow tree.

• Regardless of what node we are currently processing, its parent is always on top of the
flow stack. This allows us in constant time, for example, to determine that the nodes
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N1 and N2 are located in the package P and that the nodes N3 and N4 are situated in
the CFG C1.

The marked nodes in the AST show the current active path in the transformation process
and alongside the tree we see the current status of the flow stack.

As stated in the previous section, for each open flow structure, we also save the inducing
AST element. We will use this information together with the element stack to ensure the
correctness of the nesting relationships.

Each open CFG also has a corresponding node stack (see 3.2.1) to allow the correct
linking of the CFG nodes.

Node Stacks The abstract syntax tree nodes representing ASIS statements are trans-
formed almost always into control flow graph nodes. Due to the sequential character of the
statement execution, reaching a new statement in the AST triggers the addition of a new
node to the currently open CFG. The new node is being appended at the end of the current
flow structure.

In light of these considerations it would be enough to keep track of only the last node
in the current CFG, in order to link it to the new one. In some cases, however, this is not
enough:

• Loop statements: When appending nodes to a loop’s body we must not lose trace
of its head node. We need to link the last node in the body back to the beginning.
Furthermore, in order to ensure the CFG correctness, the loop head must also be the
last node in the CFG so far, even though we may have added other nodes since.

• Decision statements: When reconstructing the control flow for a decision statement,
we must keep track of the decision statement’s head node at all times. This head node
must have a link to each of the statement’s branches.2

In order to master situations where information about nodes handled in the past is
needed, we employ node stack structures. Each open CFG (currently on the flow stack) has
its own node stack.

Unlike the stacks presented so far, the new type maintains per default a height of only
1. It holds only the last node in the CFG it represents and this node is being replaced every
time a new one is appended.

This stack only grows when information about previous nodes is explicitly needed and
that is the case only for the mentioned loop and decision nodes.

Figure 10 depicts a schematic overview of a transformation example for each of the
standard, loop and decision statements. Below each CFG is also its corresponding node
stack.

2Since we are constructing a control-flow-based out of a syntax-based structure, the transformation itself
may seem somewhat inconsistent at first. In the standard scenario, statement nodes from the AST that
have the same father and depth are being linked sequentially in the CFG. On the other hand, however,
statement nodes that have the same branch-father (if, case) and depth are being linked in parallel at
their destination. As stressed earlier, this is only due to the syntactical nature of the AST.
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Figure 10: Node stack examples

Please note that figure 10 offers a slightly simplified view of the node stack, in order to
better explain the principle of use.

• Standard transformation: The first of the three ASTs depicts the structure of a program
consisting of a procedure P that in turn contains two statements A and B.

The standard transformation procedure sequentialises the two statements, adding them
one after the other to the CFG structure, while keeping track of only one of them at
a time, on the node stack.

• Loop transformation: The second of the three ASTs depicts the structure of a program
consisting of a loop L holding two statements A and B in its body.

The loop handling is similar to the standard procedure, with one major difference: the
head node does not leave the stack for the entire duration of the loop processing.

When PreOp-ing the root of the loop subtree we place a corresponding node on the
node stack. The next event will be the PreOp for the first of the loop’s body statements.
This node does not replace the head - as it would have done in the standard procedure
- but increases the stack’s height by 1. All the following statements are then submitted
to the standard handling and do replace the top of the node stack.

The procedure described above ensures that when PostOp-ing the last node in the
loop’s body, we also have access to the loop’s head, enabling us to link it back. Also,
the loop head is the one to point to the first node outside the loop.
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To achieve these goals, once the loop finishes - when PostOp-ing its root node - we link
the top of the node stack, i.e. the last node in the loop, back to the loop head. We
then reset the stack and leave only the loop head on it for further usage.

• Decision block transformation: The third AST depicts the structure of a program
consisting of a branch statement. The root IF node is followed by two statements A
and B, each standing for one of two separate choices.

In this case, we have to save two extra nodes on the stack. The first one is the IF node
itself. We have to keep it, because each time we begin a new branch, we must save a
pointer to it in the IF node. The second one is a pseudo-node that we will use to bring
all branches back together after they finish. This will be the EI (end if) node.

By using the EI node, we reduce the complexity of this transformation considerably.
Since any of the branches could, at runtime, be part of the active control flow, we
would have to link every of these branches, i.e. the last node from each, to the first
node after the decision statement. By using this pseudo-node, we can do the linking
on-the-fly, enabling us to maintain only a minimum of information about the process.

When PreOp-ing the root of the decision subtree, we place the two IF and EI nodes,
unlinked, on the stack.

For each branch that begins, i.e. for each PreOp of a direct IF child, we link the
decision head to the newly begun branch. For each branch that finishes, i.e. for each
CHF event on the decision head we link the last node in the branch to the EI node.

When the entire decision statement finishes, i.e. when PostOp-ing the root of the
subtree, we reset the node stack and leave only the EI node on it for further usage.

By using the node stack this way, we manage to handle almost all statements in a context-
free manner, thereby reducing the overall complexity of the transformation process.

Parameter Stack In ASIS, almost all control-flow-relevant information can be derived
from statements. The only exception, however, are the function calls. As opposed to a
procedure call, that is described by ASIS as a statement, a function call is deemed an
expression and it can occur anywhere in the AST, even in declarative sections, as a variable
initialisation or type constraint.

This makes it difficult to find a way to integrate them into the CFGs, yet, since for each
function call, the control flow leaves the parent entity and passes over to the function’s body,
we had no choice but to develop a mechanism to keep track of all such jumps in the program.

Furthermore, function calls have parameters and they are themselves expressions. This
means that complex hierarchies can be built by repeatedly nesting calls in other function’s
parameter values.

The easiest way to handle function calls, regardless of the call-nesting hierarchy, would
be to save them in a list and scan each of their CFGs every time the control flow reaches
the regarded section.

However, the above concept performs well only as long as no parameter aliasing is needed,
i.e. only as long as no information about the values passed to each of the parameters of
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the called function is required. As soon as such information is needed, a mechanism to
associate parameters to their passed values must be implemented, regardless if the values
are immediates (constants), variables or themselves function calls.

To cover all possible scenarios, we have introduced the parameter trees (see 2.2.2) that
describe a function call in tree form. The root of the structure is the top function in the call
hierarchy. Each parameter of the call is described as an immediate successor of this node.
The passed immediates and variables are saved as leaves - they have no successors -, whereas
each passed function call will have its own children in a recursive manner. Please note that
the child-order in the parameter trees is strict, so that parameter values cannot be switched
by mistake.

The main advantages of the parameter trees are, among others:

• Storage support for non-statement CFG-relevant information

• Complete parameter aliasing support for call hierarchies of arbitrary depth

Due to the considerable possible depth of the call hierarchies, we must be able to move
up and down in the parameter tree currently in construction, as the DFS traversal walks
over the AST. The easiest way to achieve this goal is to implement the tree generation over a
stack structure that will hold the current path in the tree in work. This will be the parameter
stack.

The main purpose of the parameter stack is to describe calls. At times, however, it will
also be used to hold complex array index hierarchies, that are described in the AST through
function-call-similar subtrees. The partial call description held on the stack is actually the
path from the root to the current node in the parameter tree.

The standard usage can be summarised as follows: for each PreOp of a function call
respectively parameter specification, a new node is added to the current parameter tree and
placed on the parameter stack, whereas for each PostOp of the same structure, the node is
being removed from the stack again.

Figure 11 depicts the AST representation of a three-level deep call hierarchy and the
associated parameter stack and tree. Please note that the AST in this diagram has been
simplified for purposes of readability.

The marked nodes in the syntax tree show the current traversal path. We can clearly see
here how each function called has been placed on the parameter stack, in this case finishing
with the variable j.
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The figure also depicts the corresponding parameter tree, the marked nodes in it showing
the path to the current node. The dotted edge and node indicate the future position of
the node k, that will be appended as soon as the DFS traversal of the AST reaches the
corresponding element.

We summarise at this point the connection between the three structures again: while
traversing the abstract syntax subtree of a subprogram call, we construct the corresponding
parameter tree, with the path to the current node in the latter structure being held on the
parameter stack.

3.2.2 Transformation Data Container

The state machine-like behaviour of the three event handlers PreOp, PostOp and CHF
implies the existence of a global and throughout the procedure persistent data storage.
Most of the gathered information will be saved directly into the flow world. Some, however,
will need an interim storage, outside the flow world, until it can undergo more specialised
processing.

This temporary storage is provided by the transformation data container (TDC).
Figure 12 depicts the component organisation of the transformation data container. We

will now provide a description for each used substructure.

Declaration (Decl) As explained in the Overview (3.1) section, many Ada syntactical
constructs can be grouped into classes, so that all structures in the regarded class are being
described by ASIS using the same AST configuration.

This is especially well visible for variable-class entity declarations. These are, among
others, the variables, the subprogram parameters and the named components of aggregate
types (records).

Since each such declaration must be saved at a different location in the flow world, it is
much easier for us to exploit their similarity and to use a common structure for all of them
during the information gathering. This structure is provided by the data container, and it
will be copied to the flow world, as a whole, once the subtree traversal has ended.
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Upon receiving a PreOp event for one of the above declarations, we allocate a new
Flow Types.Declaration object and save a reference to it in the TDC.Decl variable. CHF
events will fill the data structure with information and the PostOp will trigger its relocation
to the flow world.

Type Declaration (Type Decl) The exact same considerations and mechanisms used for
the variable-class declarations are also employed for the types. Some of the type declarations
sharing the same AST configuration are: the ordinary types, the subtypes, the private types
and the private extensions.

A PreOp event for such an element triggers the allocation of a type description
(Flow Types.Type Descr) object and the saving of its reference in the TDC.Type Decl vari-
able. CHF events will fill the data structure with information and the PostOp will trigger
its relocation to the flow world.

Formal Declarations (Form Decls) Formal declarations are used in the description of a
generic entity (package, function or procedure) to mark the constructs that can be specified
at a later point in time.

The formal entities can be: objects, functions, procedures, types and packages. For this
purpose we will use class pointers in the TDC this time, instead of plain object pointers like
in the previous two cases.

The variable- and type-class declarations described before, occur always in the context
of their father flow object and for this reason, we only have to keep one pointer at a time in
the TDC. Since formal declarations occur before the name of the generic entity, we have -
during their processing - no father structure yet. Also, the number of the formal declarations
is arbitrary. For these two reasons we must maintain a list of such declarations in the data
container. Only when the generic entity has been created in the flow world do we relocate
the entire formals list to its destination.

A PreOp event on a formal entity triggers the allocation of a corresponding object
(Flow Types.Obj Formal Decl, Type Formal Decl, . . .) and its addition to the
TDC.Formal Decls list. The CHF events will fill the data structure with information.

At a later point in time, when the generic father structure is allocated, the formals list
will be claimed automatically by it.

References (Refs) The inclusion clauses3 with and use may carry control flow-relevant
information and must, for this reason, be saved in the flow world. Let us assume an en-
tity E refers (with) to a package B that has an initialisation block. Upon running E, the
initialisation block of B will also be executed.

Since references occur out of context, i.e. without a parent structure, we must store
them temporarily in the TDC until the tree traversal reaches the entity benefiting from
these inclusion clauses.

A PreOp triggers the allocation of a reference object (Flow Types.With Ref, . . .) and its
addition to the TDC.Refs list. The CHF events will fill the data structure with information.

3We speak of inclusion clauses as references.
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At a later point in time, when the benefiting entity is allocated in the flow world, the
references list will be claimed automatically by it.

Names (Names) Almost every time a non-Ada entity, i.e. variable, subprogram, package,
etc., is used in the AST, its name will be present as an ASIS element of type expression,
subtype identifier.

The majority of these contexts is explicitly handled by Ast2Cfg and the names are used
accordingly - for example, the identifier containing the name of a procedure called is saved
correctly, as target CFG, in the newly created call node.

For all the cases that are not being handled explicitly, we have implemented a mechanism
called identifier harvesting, that saves all the identifiers found on the way, that have not
directly been used.

Let us consider the handling of a statement that contains variables which are not being
used explicitly by the transformation logic. These variables will be saved on-the-fly in the
Unbounded String list TDC.Names and when PostOp-ing the statement, this list will be saved
automatically in the corresponding CFG node. This way, no information will become lost
during the process.

Rename (Rename) A renaming is an alias relationship between two entities, allowing the
use of a pseudonym for an existing construct, in the context of this association. The AST
of a renaming usually holds two children: the former being the surrogate and the latter
the original. In complex renaming declarations, e.g. renamings of types with constraints,
respectively renamings of function calls with parameters, several other child nodes may
intercalate between the two.

The transformation data container provides a Flow Types.Renaming structure to store
the information during the gathering process. This record also offers the possibility to hold
a parameter tree, should the need arise, i.e. should the renaming contain any function calls.

When PreOp-ing the root node of a renaming, the corresponding structure is allocated
in the TDC. A PostOp triggers the data transfer to the flow world, and CHF events fill the
record with information.

Last Parameter Tree (Last PTree) In most of the cases, the need for a parameter tree
is being announced by a special node in the AST. For example, let us consider the func-
tion parameters. The root of such a subtree is of ASIS type parameter specification. A
Pre-/PostOp event on such a node triggers the creation or destruction of a corresponding
parameter tree in the flow world.

For this reason, we process an AST node that needs an open tree, e.g. a function call,
under the premises that the tree handling has already been done. We therefore perform no
special check on the availability of the structure even if this may lead to inconsistencies in
some cases.

Such problems arise when a parameter tree has not been properly announced. In this
case the traversal constructs the tree without having saved its root in the flow world. After
completion, the tree vanishes without leaving any reference behind, causing memory leaking.
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This is the case when processing the guard expressions for protected entry declarations.
They begin without an introduction node, as direct children of the subtree’s root. Since
more parameter trees may exist during the declaration, for example if the entry parameters
have initialisation expressions, we can only look for the guardian expression once the subtree
has been completely traversed. By this time, however, an eventual parameter tree will have
already been lost.

To avoid the described inconsistencies, we save the root of each open parameter tree
temporarily in the TDC.Last PTree variable of the TDC, so that we can locate the last open
tree even after it has been closed.

Ignore Mode (Ignore Mode) We save, per default, each parameter specification we find
during the traversal. In some cases this could lead to redundant information. The header
of a subprogram is contained - in exactly the same form - both in the package specification
and in the package body. Since a subprogram must be visible by the time it’s being used
and since we are working with successfully compiled code, we do not have to perform any
visibility checks on our CFG call nodes, thus enabling us to ignore the spec-declaration. We
will derive all our needed information from the package body.

To tell the transformation state machine to ignore the subprogram parameters present
in a package specification, we use a boolean variable TDC.Ignore Mode to instruct our three
main methods to do so.

A Pre-/PostOp event on a, for example, function declaration (as opposed to a function
body declaration) will set/reset the variable.

3.3 Transformation

This section describes the processing of each ASIS type explicitly handled by the AST-to-
CFG transformation. Source code-insight may prove helpful during the reading.

Before we continue, however, we would like to offer a brief synopsis of the main ASIS
types, to improve the reader’s understanding of the transformation procedure.

ASIS employs an own, standardised, data structure hierarchy. Eight main classes exist:

• Clauses
They describe inclusion and visibility relationships between Ada packages. References
to packages containing initialisation blocks will trigger their execution, thereby adding
control flow information to the current context. For this reason we must save any
clauses we encounter into the flow world.

• Associations
They are entity pairs describing a substitution relationship between an original and the
surrogate to be used in its place. A typical such relation is the parameter association,
that describes the value to be used as input for a parameter in a subprogram call.
We need this kind of information to enable parameter aliasing, i.e. keeping track of a
variable usage over a deep call hierarchy.

• Definitions
ASIS uses definitions mainly to describe new types that appear in a program. Tasks
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may also be used as type components. In order to allow a statical task analysis over our
structures, we must provide means to locate any task references that may be hidden
in type definitions.

• Declarations
This is one of the most important ASIS type-classes. Every new entity, be it type,
data structure or subprogram, will be introduced by a declaration. Aside from minor
exceptions, we will always identify packages and CFGs over ASIS declarations.

• Expressions
ASIS uses the type expression to refer mostly to the syntactical constructs that upon
evaluation return a result. The main member of this category is the Function call.
Since functions contain per definition control flow information, we must save them in
our flow world.

• Paths
Path-type nodes mark the beginning of each of a branch node’s (if, case) possible
alternatives. We will append them to the CFG only for reasons of readability.

• Statements
With the statement being the basic control flow unit, it is by far the most important
data structure in ASIS. Each imperative line of code in Ada will produce one statement
node in the AST respectively one node in the CFG.

• Exceptions
The exception handlers describe the actions to be performed should a certain excep-
tion be thrown. This information becomes especially important in a multi-tasking
environment, where handler code may be run in parallel with other tasks.

Now that we have outlined the data types we can stress out the importance of the
declarations and statements. The declarations tell us which entities exist and the statements
present us with their content. The declarations will employ definitions to specify new types
whereas the statements will use associations to call subprograms.

3.3.1 Clauses

Entity Visibility and Inclusion Clauses: With, Use Package and Use Type Clauses
These are the most common visibility clauses. They specify which entities are visible in

the current context.
For each begun clause, we will add a new reference structure to the transformation data

container. The name of the reference will be added by the CHF event, upon processing the
corresponding child.

The list of visibility clauses will be claimed by the next flow structure to be created, e.g.
when PreOp-ing the next package we will automatically save the list in it. The meaning
of this transfer is: the structures named in the clauses list are hereby visible in the new
package.
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3.3.2 Associations

Parameter-class Associations: Parameter, Discriminant, Array Component and Record
Component Associations

The expressions to be used as input for the parameters of a subprogram call are being
described in the AST by using parameter association subtrees. Let us consider the function
call f(j). Its association subtree holds the node j. The parameter association subtrees may
also hold the names of the parameters themselves, in calls like f(i => j).

The task parameters are called discriminants and share the same structure with the
former ones. The latter, may, however, also be used as initial input parameters for records.

Array component associations, as their name says, are used to initialise arrays, like
Var Array := (Var1, Var2, [..]). They use only a subset of the parameter-class associa-
tion characteristics.

As described in the structures section (3.2), we employ parameter trees to represent the
parameter hierarchies. The path to the current node in the active tree is saved on the
parameter stack. For this purpose, when PreOp-ing such an element, we must place a new
node (as root for this subtree) onto the stack. If this is an i => j association then i will be
saved in Node.Name and j in Node.Info. This handling is especially useful if the surrogate
is itself a function call. In that case, the parameter tree will continue to grow, with the
parameters of this new function call as children of the one we have just created.

Generic Associations: Generic Associations
The generic associations are the parameters of either instantiations, i.e. when binding a

generic construct and declaring a new entity of this type
(e.g. package Real Pkg is new Gen Pkg(X => Y)), or formal declarations, i.e. when speci-
fying the formal parameters of a generic entity
(e.g. with package Form Pkg is new Gen Pkg(X => Y)). They have basically the same
structure as the parameter associations. The generic ones, however, need special handling,
since we must discern between them in order to store them correctly.

The former will be appended to the current renaming/instantiation structure, whereas
the latter will be saved in current formal declarations list. Since they cannot be nested, we
do not need stack handling.

A generic association subtree has one or two children, both expressions. The first one (if
there are two) is always the name of the generic entity and last one is always the surrogate.
The CHF will inspect the child count and ensure the appropriate storage of the data.

We are using Alias structures, with the New Name holding the generic and the Old Name

holding the surrogate type.

3.3.3 Definitions

To better understand the usage of the ASIS definitions, we must first make a short digression
towards the ASIS declarations (3.3.4). Every new entity (be it type, variable, subprogram,
package or otherwise) to be used in an Ada program, has to be described by an ASIS
declaration first. That is, for each entity used in a context, an abstract syntax subtree
rooted in an ASIS declaration must be available at all times.
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An ASIS definition describes the body of a type. It can be packed, together with a name,
in a declaration to thereby create a new variable, type, task, etc. Each user-introduced type
will have its own definition subtree in the AST.

Direct Type Definitions: Type, Formal Type, Component, Private Type, Tagged Private
Type and Private Extension Definitions

The direct type definition class employs a specific abstract syntax tree configuration
to describe new types. It holds the supertype (for variables), the base type (for arrays),
the components (for records) and all the used identifiers. Our flow world type description
structure accommodates the same fields.

This section is mandatory for each new type that occurs in the program. It’s used both
for named types (in ordinary type declarations, like type X is new Y and anonymous ones
(in variable declarations, like A: array() of Y).

Since a type definition itself may hold function calls, we must also provide an adequate
parameter tree.

The component definition describes either the base type of an array (anonymous items),
or the type of a record component (named items). The type of a variable is described using a
subtype indication. This fact is regarded as an inconsistency. Even if the record components
have a semantical value closer to that of the anonymous array components, their syntax is
still similar to that of the variables declarations. Despite this consideration, we will remain
compliant with the ASIS standard and regard the type of a variable as supertype and the
type of a component (named or not) as component type.

Most of definitions addressed in this sections are all situated near the top of the type
description subtree, thus the handling done by PreOp, PostOp and CHF is minimal, mainly
consisting of opening and closing the corresponding data structures. The real information
gathering happens when processing the ASIS elements of finer granularity.

Subtype Indication: Subtype Indication
The subtype indication is one of the basic building blocks of the AST and has been

referred to in the previous paragraph as container holding the type of a new variable. Its
semantics are, however, more extensive, this element being used generally to mark an in-
heritance relationship between an existing type and a new entity, be it new type or static
respectively dynamic variable. It can thereby be used in:

1. an inheritance relationship (type definition or variable declaration)

2. an allocation from subtype (e.g. := new type;) in a type definition

3. an allocation from subtype in a variable-like declaration

4. an allocation from subtype in a statement

CHF will determine the context and save the name of the used type accordingly.
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Record Definition: Record Definitions
A record definition marks the root of an AST containing the description of a new record-

aggregate type. Since this element kind is always packed in one of the definitions presented in
the previous paragraphs and since our type data structure can hold component declarations,
we do not need any special handling for this node in any of the three functions.

Task Definition: Task Definitions
A special kind of definition, is the task definition. We mention it for the sake of com-

pleteness, the information derived from it, however, is negligible.
The tree rooted in such a node describes the specification of a task, i.e. which entries are

available. We will deliberately skip this structure because for the task handling we employ
the corresponding ASIS declaration type.

3.3.4 Declarations

We noted in the previous section, that each entity used in a program must be introduced
by an ASIS declaration subtree. We will now describe the main declaration classes, the way
Ast2Cfg perceives them.

Type-class Declarations: Ordinary Type, Subtype, Private Type and Private Extension
Declarations

A type declaration in this category creates a new named type in the program. The
subtree will have, among others, a name (always the first child) and a type definition (the
body).

When beginning a type declaration (PreOp) we must create the appropriate data struc-
ture in the transformation data container. These structure will be closed and saved in the
current flow object by PostOp.

Package-class Declarations: Package, Package Body, Protected Type, Single Protected
and Protected Body Declarations

These are specifications, respectively bodies, of package-class flow structures. The package-
class has, aside from the possible, yet not mandatory, initialisation blocks, no control flow
semantics. The packages and the protected objects serve as containers for the CFG-class
structures, i.e. the subprograms.

The flow world counterparts of these AST structures are the flow packages. As soon as
we find the name of a new entity during the traversal, we can create it (CHF). Also, the new
structure will now gather all data that occurred out of scope: the visibility and inclusion
clauses, that are specified outside of the package and the formal declarations, that are also
semi-external to the generic entity.

PostOp will close the package and any open initialisation blocks.

Variable-class Declarations Variable, Constant, Deferred Constant and Component Dec-
larations; Parameter, Entry Index, Discriminant and Loop Parameter Specifications
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These declarations are being described using some of the most complex AST configura-
tions in ASIS, making them extremely powerful and versatile, yet equally difficult to handle.

This class contains variable and constant declarations on the one hand and parameter
and entry index specifications on the other. All these types share a common grammar built
up of:

1. entity names (variables, constants, components, parameters, etc.) of ASIS type defin-
ing name, subtype defining identifier

2. entity type of ASIS type definition or expression

3. initialisation expression of ASIS type expression

The relatively large size of this class is also an indication of the extensive synergies
occurring between the ASIS types. To profit from them, we will use a common interim
storage to hold the data during the gathering process.

When beginning such a declaration (PreOp), we must initialise a corresponding structure
in the transformation data container. It will only hold the information, until this subtree
has been finished. We also have to create a parameter tree to store a possible initialisation.

As noted above, using a common interim storage provided by the transformation data
container enables us to profit from the declarations’ similarities, allowing us to walk the tree
and gather information regardless of the root type. Only after the processing finishes we will
interrogate the node to decide upon the final destination of the data in the flow world.

As we have explained in the previous chapter, an active ignore mode indicates we are
currently processing a subprogram specification header that we can skip.

When PostOp-ing this kind of declarations, we must transfer the gathered information to
the current flow object. Due to the high complexity of the trees we are currently handling,
this may, however, not always be a straight forward operation.

Let us consider the case of the discriminant specifications. They can occur not only
as task parameters but also as input values in type declarations. As several similar cases
exist, precedence rules had to be specified, to ensure the correct saving of the, please note,
transparently gathered data. Concretely, we must query the existence of a type description
structure. The latter is created only at the beginning of a type declaration subtree. Since
it is possible to have a type inside of a task declaration, inspecting only the currently open
flow object, would bear not enough information for a correct decision. The reverse of this
case, i.e. a task inside of a type declaration, is not possible, hence enabling us to define
the following priority rule: during the processing of a discriminant specification, the type
description, if available, has precedence over the flow structure.

CHF will ensure the transformation logic switches correctly between the three base com-
ponents: names, type and initialisation.

CFG-class Specification Declarations: Procedure, Function and Entry Declarations;
Procedure Body, Function Body and Task Body Stubs

This class of declarations describe the header of a subprogram specification (function,
procedure, entry, stub, etc.). Due to the fact that the body of the same subprogram must
be visible when being used, we will ignore most of the above specifications.
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PreOp sets the ignore mode flag and PostOp resets it again.

CFG-class Body Declarations: Procedure Body, Function Body, Entry Body, Single
Task, Task Type and Task Body Declarations

The structures handled here are the main control flow information containers. Their
Ast2Cfg counterparts are the control flow graphs. Similarly to the packages, we only create
the appropriate flow structures once we find their names (CHF).

Entry body declarations also have a guard, i.e. an expression that decides whether the
code will be executed or not. We will save the root of the generated parameter tree together
with the current flow object.

Generic Structures Declarations: Generic Package, Generic Procedure and Generic
Function Declarations

Although the generic types specified here are no bodies (but specifications) we still need
to handle them like the former and create flow structures for them. The reason is that we
need containers for their formal parameters.

Since by the time we reach them, we will have already processed their formal declarations
list - the formals occur earlier in the AST - we only need to save their list into the newly
created flow objects.

Formal Declarations: Formal Object, Formal Type, Formal Procedure, Formal Function,
Formal Package and Formal Package With Box Declarations

Generic entities employ formal declarations to define which parameters (variables, types,
subprograms, packages) are to be specified by the end-user of the construct.

Since we do not need the parameters of the declared subprograms we can enable the
ignore mode. All the formal declarations will be stored in a list, until the generic flow object
has been created. Please note that this object does not exist yet, since we do not have its
name.

The formal declarations themselves are very similar to the variable-class ones. They also
have three types of children:

1. entity names of ASIS type defining name, subtype defining identifier; these will be the
generic parameters of the new object

2. entity base- or supertype of ASIS type expression

3. initialisation expression of ASIS type expression

The handling is done in CHF and is otherwise similar to the variable-class declarations,
with special regard to the type, here not type definition but expression, and to the storage,
here into the formal declarations list.
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Renaming Declarations: Procedure, Function, Generic Procedure, Generic Function,
Package, Generic Package, Object and Exception Renaming Declarations

Renaming declarations are rather straight forward aliasing operations, where an existing
entity is assigned one more name. Some renamings may hold parameters to be passed to the
existing entity.

The handling is simple. PreOp will create the appropriate records, CHF will save the sur-
rogate name and PostOp will add the name of the existing structure. Eventual initialisation
parameters will be stored in a parameter tree.

Generic Instantiation Declarations: Package, Procedure and Function Instantiations
Generic instantiations are used to bind a generic entity to given types, subprograms, etc.

and thereby create a new one with certain characteristics.
Due to the fact that renamings may also be passed parameters, the handling of the

generic instantiations is completely identical, with regard only to the new underlying data
structure type.

3.3.5 Expressions

All syntactical constructs that upon evaluation return a value are deemed expressions. They
range from simple array accesses to complicated function call hierarchies.

Aggregates References: Positional Array, Record Aggregates
This class of references includes array accesses like A(i) and record accesses like A.i.

Since arrays, records and function calls can be combined to create complex accessing hier-
archies, we act preemptively in PreOp by creating an extra node in the parameter tree. All
subsequent function calls will be saved as children of this node.

Let us consider a configuration like A(f(i),g(j)). An item of the bidimensional array
A is accessed using two functions f and g. By acting as described above, we will ensure that
both function calls will be saved as children of the array access node, thereby enabling us to
determine which call was used for which index.

Attribute References: Attribute References
An access to an entity’s attributes is called an attribute reference. They are constructs

like Variable’Attribute.
Per default, we gather all identifiers we encounter on the way, including attributes. Since

the latter can only be read we will ignore them.

Allocations from Subtype: Allocations from Subtype
Each new dynamic memory allocation provided with a type, is called an allocation from

subtype. Since they can be used both in the declarative and the imperative section of a
program and since they resemble the function calls in their usage, we will treat them like
the latter and spawn a new node on the current parameter tree for them.

36



Type Conversions: Type Conversions
A type conversion subtree describes the casting of a variable from its defined supertype

to a second compatible or inherited one. The subtree has two children, the first describes
the type we are converting to and the second describes the structure to be converted.

Since the target type is an ASIS expression/identifier, the variable harvesting process
will save it into the identifier list, even though it is not a variable. For this, we will forcibly
flush the list before proceeding with the converted structure.

Identifiers: Identifiers
The identifier is one of the most important basic building blocks of the AST. Each user-

defined name occurring in the program will be found in the AST as identifier. Some minor
exceptions exist, for example the labels that are of ASIS type defining name, subtype defining
identifier.

Our identifier harvesting mechanism will gather all found identifiers in a special list. The
names that are not being used directly by the transformation logic, will be saved automati-
cally in the current CFG node, at the end of each statement.

Operator Symbols: Operator Symbols
Operator symbols are the predefined operations like +, −, etc. They would be ignored by

the identifier harvesting since they are no identifiers, but for the sake of the CFG readability
we will treat them as such.

Function Calls: Function Calls
As the name says, these are the genuine function calls. They possess their own parameters

and can also be used as parameters for other subprograms, at the same time.
To enable parameter aliasing, i.e. the association of the input entities to the correspond-

ing subprogram parameters in deep call hierarchies, we will construct a parameter tree. Each
function call is represented by one node in the tree and the ordered set of a node’s children
are the specified input entities. This definition is recursive, allowing the tree to grow as the
parameter call hierarchy becomes deeper. A call like f(g(h(),i())) will result in a three
levels deep tree, with four nodes. f will be the root and will have one child: g. g will, in
turn, have two children: h and i.

To construct such a tree, we must add for each function PreOp a new node to it and
remove it in PostOp.

Selected Components: Selected Components
The selected components are Ada’s way of addressing nested entities like

Pkg Outer.Pkg Inner.Procedure. ASIS splits these names and constructs for each such
composition a binary syntax subtree, with each token contained in one leaf. The root holds
the complete name, the left child the first token and the right one the rest of the name. The
construction process is recursive, leaving the last node at the bottom right of the tree with
two leaves, each holding one token.

Since we need to know the complete name of an entity, we must recompose it from the
tree. For this, we will gather the names bottom up, each CHF concatenating the name
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constructed so far with the token in the left child, i.e. in exact reverse order as it was
initially parsed.

Indexed-class Components: Indexed Components, Slices
Indexed components and slices are ASIS’ way of addressing array aggregates.
Due to the extreme possible complexity of the array indexes we will only store the name

of the leading variable. Also we will attempt to construct a parameter tree in a similar
fashion to the function call hierarchies.

3.3.6 Paths

Branching-class statements, i.e. if, case are being described in the AST by providing a
subtree for each possible decision. The root of each such subtree is of ASIS type path. To
improve the CFG readability we will also add a path node at the beginning of each CFG
branch.

3.3.7 Statements

The imperative constructs in an Ada program are being referred to as statements. They
are by far the most important ASIS types, with the statement being the basic control flow
semantic unit.

Each imperative line of code in Ada produces one statement node in the AST. Complex
ones also have associated subtrees for each of their components. ASIS also generates for each
possible branch in an if or case construct a so called path-node. One such node marks the
beginning of a possible alternative.

The standard procedure when dealing with statements/paths (PreOp) is to create a
general purpose node in the CFG and put it on the node stack of the current flow object.
Special statements, however, require somewhat different handling, so, at a later point in
time, we may decide to replace the general purpose node with a specialised one. In PostOp
we will remove same node.

Statements occur mostly in CFGs and will thereby, most of the time, have a CFG parent
structure. For those that do not fall in this category, i.e. the ones in the initialisation section
of a package, we will create an Init-CFG and append it to the current flow object.

The statement handling is also the main user of the node stack. We have already outlined
its usage in the data structures section: each new node replaces its top, with the stack only
growing for branch- and loop-class statements. When describing these classes we will further
examine this topic.

The identifier harvesting also plays an important role in the statement handling. At the
end of each statement (PostOp), we save the list of gathered identifiers in it and then reset
it. By doing so, we ensure that no variables will be lost on the way.

Statements may also contain expressions. To save them, we provide each statement with
a right hand side parameter tree. The recursive nature of the trees makes them the ideal
structures to represent nested expressions. In most of the cases, one tree per statement is
enough. The only one that needs two is the assignment statement. For it, we will also
provide a left hand side parameter tree.
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Statements may also have names (labels). They are especially important since they
can be targeted by the jump-class statements (goto,exit) adding extra information to the
control flow.

All the statement types listed below replace the general purpose node with a specialised
one.

Assignment Statements: Assignment Statement
The assignment statements, e.g. A := B, are the only ones that need a second parameter

tree. This may be necessary since the left hand side of the assignment may also hold function
calls.

Special attention must be paid to the written variable - it must be stored separately from
the rest. There is no bound to the complexity of the expression used in the specification of
this variable. This restrains the precision of the statical analysis. We will limit ourselves to
keeping only the name of the leading variable.

Jump-class Statements: Goto and Exit Statements
The subtree holding the description of a statement in this category also holds the name

of the jump’s target. We will replace the generic node with a structure providing storage
space for it. We will use this name in the post-transformation phase to make the correct
links in the CFG.

Call-class Statements: Procedure Call, Block, Raise, Entry Call, Requeue, Requeue With
Abort, Abort and Accept Statements

All the call-class statements named above represent jump points into foreign CFGs. The
most common ones are the procedure calls. In a similar way we treat the task-related jumps,
like entry call and requeues. A raise may not have the same semantics as the common call
statement, yet it is still best treated here since it may be an inter-CFG jump. blocks and
Aborts have no calling semantics, but for the sake of consistency we will pack all subsequent
statements in an extra CFG that we will then call at their point of occurrence.

As previously suggested, the parameter tree of a call node (including function calls),
describes the input entities provided to the referred subprogram. Its root represents the main
subprogram and the children are its parameters. They may be function calls themselves and
have own parameters. The definition is recursive, setting no bound to the call depth.

Branch-class Nodes: If, Case, Selective Accept, Conditional Entry Call, Timed Entry
Call and Asynchronous Select Statements

This is the first of the two classes of nodes that, in their handling, modify the size of
the node stack. In the appropriate section (3.2.1) we have already described the employed
mechanism.

Similarly to the previous classes of statements, we replace the current top of the node
stack with a new structure: this time with a branch node. If we were to leave it at that,
the first node to be handled next will replace it and we would lose contact with the branch
head. To enable a transparent handling of the rest of the nodes, we must increase the size
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of the stack. Next we will place an EndIf node on it, that, in the end, will gather all split
paths back together.

To not lose this node either, we will place a second, redundant copy of the branch head
on top of the node stack. With this configuration we can now process the rest of the nodes
as if the stack had only a height of one. At the end of each branch we restore the If-EndIf-If
configuration. Once all branches have finished, we rearrange the stack leaving only the EndIf
node behind.

If-statements have a default else branch, if the user does not explicitly provide one. The
former, however, has no representation in the AST. To ensure the semantical correctness of
the CFG, we will provide one automatically, should the AST not include one.

Loop-Class Nodes: Loop, While Loop and For Loop Statements
Similar to the branch-class, the loop-class also need a customised node stack. This time

we must only link the last node in the loop back to the head, so a Loop-Loop configuration
on the stack will suffice.

Once all statements in the have been processed, we clear the currently Loop-LastNode
configured stack and link the nodes properly.

To ensure that no loop head lies at the end of a control flow, we will also add a pseudo
post-loop node to the CFG.

Termination-class Nodes: Return and Terminate Alternative Statements
The handling of these statements only includes replacing the generic node with a termi-

nation one. Further processing will be done in the post-transformation phase.
This corresponds to the syntactical representation provided by the AST: the return node

is followed by other statements. The semantics are, however, different: the nodes behind the
return statement are not reachable over this path. In the post-transformation phase, we will
correct the CFG by removing all the successors of the return statement.

3.3.8 Exception Handlers

We treat exception handlers in a similar way we treat block statements. The complete code
of an exception handler will be packed in a separate CFG, leaving only one reference in the
original code behind. Thrown exceptions can be caught up to a certain extent:

• exceptions thrown and caught in the same CFG can easily be put in relation to one
another

• exceptions caught in foreign CFGs can be handled only if some information about the
beginning of a call graph is available; this graph can then easily be constructed from
the flow world
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3.4 Post Transformation

3.4.1 Loop Refinement

As can be seen in Figure 13 a while loop without an exit statement is already represented
correctly after the transformation process (The same is true for for loops without exit

statements). However, when it comes to simple loop statements or exit statements some
refinement has to be done in order to achieve a correct representation.

Node 1.1.5:

Idents: <=
while I <= 10 loop

Assignment Node 1.1.11:

Idents: I,+
I := I + 1;

Node 1.1.16:

Loop End

Figure 13: A while loop.

Figure 14 shows a simple loop with an exit statement. The edge from the exit jump
node to the loop end is missing, and even though a simple loop has no condition in its header
there is an edge from the header node to the loop end. In Figure 15 the same loop after the
refinement is shown.

Node 1.1.5:

loop

Node 1.1.8:

Idents: >
exit when I > 10;

Node 1.1.19:

Loop End

Assignment Node 1.1.14:

Idents: I,+
I := I + 1;

Figure 14: A simple loop statement before the refinement.

Since the loop refinement takes place after the CFG has been built, the first task is
to find the loops again. As a basis Tarjan’s algorithm for constructing the loop forest as
presented by Ramalingam [5] is used. Since this algorithm needs the backedges, first a DFS
with two different node marks is performed on the CFG. When a node is visited for the first
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Infinite Loop Node 1.1.5:

loop

Exit Jump Node 1.1.8:

Idents: >
exit when I > 10;

Assignment Node 1.1.14:

Idents: I,+
I := I + 1;

Node 1.1.19:

Loop End

Figure 15: A simple loop statement after the refinement.

time it is marked as “grey”, and when the recursion on that node is finished it is marked
as “black”. Any edge encountered during this algorithm that leads from a node marked as
grey to another grey node is a backedge. This is because in a reducible CFG every retreating
edge is a backedge [3].

There was no need to modify the findloop procedure of Tarjan’s algorithm, however, in
the collapse subprogram, the actual loop refinement is performed. Collapse is called for
every loop with the loop header and the loop body as arguments. Each node of the body is
collapsed on the header as it is in the standard algorithm.

Then exit jump nodes with an empty target, which means they exit the current loop,
and exit jump nodes with a target loop are collected separately in two lists. Also for every
node it is recorded if it has a successor that is not part of the loop. At the current state only
one such edge may exist, namely the edge from the loop header to the loop end node (see
Figure 13-14).

Now every exit jump node for the current loop and those that match the label of the
current loop are connected to the loop end node. After that the list for the current loop
exits is empty, however, the list for loop exits with a target may contain elements that are
used in a later call to Collapse. Note that because of the nature of Tarjan’s algorithm the
inner loops are always found first, so the loop with the corresponding label is always found
after the exit is found.

Finally, if the current loop is a simple loop statement, the edge from the header to the
loop end is removed. In case there is no exit statement within the loop and therefore the loop
is an endless loop, it is possible that now some nodes are not reachable any more, or at least
are not reachable by only following the links to successors. However, they may still be reached
by traversing the CFG backwards, using the links to the predecessors of each node. Therefore
these nodes need to be completely removed and deallocated. So before removing the edge its
target node is saved and at the end of the loop refinement Strip Dangling Nodes provided
by Post Trans Processing is called (see Section 3.4.3) which removes the non-reachable
subgraph in case there is one.
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3.4.2 Connect Gotos

During the transformation the labels of a statement were saved separated by commas as a
string and can now be retrieved by calling Get Name. Similarly the target of a goto statement
was stored. The only thing left to do is to connect every Goto Jump Node Object to its target
node, so that there is an edge in the CFG representing the jump. This is done by the
Connect Gotos subprogram.

First two lists are built during a depth first search: one containing references to the found
goto jump node objects (Sources) and one for the nodes with labels (Targets). Note that
a goto jump node may also have a label, and therefore may be on both lists simultaneously.
Then for each item in the Sources list the list of targets is searched for the corresponding
label. When the target is found it is connected to the source node using appropriate calls to
Add Succ and Add Pred.

However, before the target is added as a successor of the source, the existing outgoing
edges of the source node have to be deleted. This is to remove the auxiliary edge that
connected the goto jump node to the node for the statement right after it. That auxiliary edge
was necessary in order to keep the CFG connected until now. In case there is unreachable
code following the goto statement, now there are nodes in the CFG which are unreachable
by only following the links to successors (see 3.4.1). They have to be removed by calling
Strip Dangling Nodes (see Section 3.4.3).

3.4.3 Removing Dangling Nodes

Strip Dangling Nodes is called by Connect Gotos and the loop refinement subprograms in
order to check for subgraphs that are not reachable by following the successor links any more.
However, because a backwards traversal of the CFG which follows the predecessor links still
reaches those subgraphs they need to be properly removed and deallocated.

Strip Dangling Nodes gets a set of nodes as parameter that are roots of such possibly
unreachable subgraphs. The goal is to find all nodes that are not reachable through an
ordinary DFS. Therefore a DFS is performed on the CFG and all reachable nodes are added
to a set. Next, depth first searches are executed starting at every root node of a possibly
unreachable subgraph, and the nodes that are reachable are added to another set. Note
that such an unreachable subgraph may still be connected to the CFG somewhere else. So
finally the set containing the nodes collected with an ordinary DFS is subtracted from the
set containing the unreachable subgraphs so that only those nodes that are not reachable
through DFS remain. These nodes are then disconnected from the CFG and deallocated
properly.

As an example consider Figure 16. Solid edges represent successor links while dotted
edges are predecessor links. Figure 16(a) shows a CFG before Goto Node 1 is connected
to Target Node 7. In Figure 16(b) the CFG can be seen after the goto was connected.
Node 2 is the root of an unreachable subgraph which consists of the nodes 2-6. Note that it
still may be reached using the predecessor link (7,6). In Figure 16(c) the two sets built by
Strip Dangling Nodes are depicted. The set surrounded by a solid edge is the set containing
all nodes reachable through an ordinary DFS, while the set surrounded by a dashed line
contains all nodes that are reachable from the root of the dangling subgraph. The difference
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leads to nodes 2-6, which are removed as shown in 16(d).

(a)
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8

target

1 goto

(b)
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target

1 goto

(c)
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7

8

1

(d)

7

8

target

1 goto

Figure 16: Dangling nodes being removed from the CFG.

4 Performance

To give an impression of the performance of Ast2Cfg, in this section we present the bench-
mark data for the execution of Cfg2Dot in two different cases. The execution times were
measured with the Linux command time on a machine with an Athlon XP 2800+ processor
and one gigabyte of RAM.

The first test was performed on the adb files located in the adainclude directory of a
typical GNAT installation. Note that this directory also contained the ASIS-for-GNAT files.
The 588 tree files with a total of 426.4 MB were generated with GNAT in approximately
91 seconds. Then Cfg2Dot generated 5472 separate CFGs and 189 Pkg/Cfg trees in 213
seconds.

The second test was executed using the adb files of Ast2Cfg itself. After 34 seconds of
tree file generation, which led to 111 files with a total of 252.8 MB, we deleted all files that
were not directly related to Ast2Cfg, such as tree files for Ada or ASIS includes. Since the
latest ASIS-for-GNAT version does not already support some of the Ada 2005 constructs
used in the post transformation code, one of the Ast2Cfg tree files also had to be deleted.
Then Cfg2Dot was executed for the remaining 18 tree files with a total of 31 MB. After 35
seconds 293 CFGs with 53 Pkg/Cfg trees were generated.
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5 Future Work

Due to the raw state of the gathered control flow data, further refinement is necessary in the
post transformation phase.

Also, two projects based on Ast2Cfg are already in work. The first one aims at the de-
tection of busy waiting while the second attempts to find access anomalies in Ada programs.
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